Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 16(2): e13238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444256

RESUMO

Bacterial-algal interactions strongly influence marine ecosystems. Bacterial communities in cultured dinoflagellates of the family Symbiodiniaceae have been characterized by metagenomics. However, little is known about whole-genome analysis of marine bacteria associated with these dinoflagellates. We performed in silico analysis of four bacterial genomes from cultures of four dinoflagellates of the genera Symbiodinium, Breviolum, Cladocopium and Durusdinium. Comparative analysis showed that the former three contain the alphaproteobacterial family Parvibaculaceae and that the Durusdinium culture includes the family Sphingomonadaceae. There were no large genomic reductions in the alphaproteobacteria with genome sizes of 2.9-3.9 Mb, implying they are not obligate intracellular bacteria. Genomic annotations of three Parvibaculaceae detected the gene for diacetylchitobiose deacetylase (Dac), which may be involved in the degradation of dinoflagellate cell surfaces. They also had metabolic genes for dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen (N) cycle and cobalamin (vitamin B12 ) biosynthetic genes in the salvage pathway. Those three characters were not found in the Sphingomonadaceae genome. Predicted biosynthetic gene clusters for secondary metabolites indicated that the Parvibaculaceae likely produce the same secondary metabolites. Our study suggests that the Parvibaculaceae is a major resident of Symbiodiniaceae cultures with antibiotics.


Assuntos
Alphaproteobacteria , Dinoflagelados , Sphingomonadaceae , Ecossistema , Genoma Bacteriano , Antibacterianos , Vitamina B 12
2.
Microbiol Resour Announc ; 13(2): e0081623, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38179908

RESUMO

Tetratostichococcus sp. P1 shows an acidophilic phenotype which could allow mass-scale monoculture of this green microalga without severe contamination by environmental microorganisms. In this study, we report a chromosome-scale genome assembly for Tetratostichococcus sp. P1.

4.
iScience ; 26(6): 106893, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378338

RESUMO

Male and female genotypes in heterothallic (self-incompatible) species of haploid organisms, such as algae and bryophytes, are generally determined by male and female sex-determining regions (SDRs) in the sex chromosomes. To resolve the molecular genetic basis for the evolution of homothallic (bisexual and self-compatible) species from a heterothallic ancestor, we compared whole-genome data from Thai and Japanese genotypes within the homothallic green alga Volvox africanus. The Thai and Japanese algae harbored expanded ancestral male and female SDRs of ∼1 Mbp each, representing a direct heterothallic ancestor. Therefore, the expanded male and female ancestral SDRs may originate from the ancient (∼75 mya) heterothallic ancestor, and either might have been conserved during the evolution of each homothallic genotype. An expanded SDR-like region seems essential for homothallic sexual reproduction in V. africanus, irrespective of male or female origin. Our study stimulates future studies to elucidate the biological significance of such expanded genomic regions.

5.
Commun Biol ; 6(1): 590, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296191

RESUMO

The coexistence of three sexual phenotypes (male, female and bisexual) in a single species, 'trioecy', is rarely found in diploid organisms such as flowering plants and invertebrates. However, trioecy in haploid organisms has only recently been reported in a green algal species, Pleodorina starrii. Here, we generated whole-genome data of the three sex phenotypes of P. starrii to reveal a reorganization of the ancestral sex-determining regions (SDRs) in the sex chromosomes: the male and bisexual phenotypes had the same "male SDR" with paralogous gene expansions of the male-determining gene MID, whereas the female phenotype had a "female SDR" with transposition of the female-specific gene FUS1 to autosomal regions. Although the male and bisexual sex phenotypes had the identical male SDR and harbored autosomal FUS1, MID and FUS1 expression during sexual reproduction differed between them. Thus, the coexistence of three sex phenotypes in P. starrii is possible.


Assuntos
Genoma , Cromossomos Sexuais , Haploidia , Reprodução/genética
6.
Small ; 19(34): e2208287, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093189

RESUMO

For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4 Ti4 O15 .

7.
Commun Biol ; 6(1): 89, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690657

RESUMO

Ultrasmall algae have attracted the attention of biologists investigating the basic mechanisms underlying living systems. Their potential as effective organisms for producing useful substances is also of interest in bioindustry. Although genomic information is indispensable for elucidating metabolism and promoting molecular breeding, many ultrasmall algae remain genetically uncharacterized. Here, we present the nuclear genome sequence of an ultrasmall green alga of freshwater habitats, Medakamo hakoo. Evolutionary analyses suggest that this species belongs to a new genus within the class Trebouxiophyceae. Sequencing analyses revealed that its genome, comprising 15.8 Mbp and 7629 genes, is among the smallest known genomes in the Viridiplantae. Its genome has relatively few genes associated with genetic information processing, basal transcription factors, and RNA transport. Comparative analyses revealed that 1263 orthogroups were shared among 15 ultrasmall algae from distinct phylogenetic lineages. The shared gene sets will enable identification of genes essential for algal metabolism and cellular functions.


Assuntos
Clorófitas , Genoma , Filogenia , Clorófitas/genética , Genômica , Água Doce
8.
BMC Microbiol ; 23(1): 16, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36650459

RESUMO

BACKGROUND: Astrephomene is an interesting green algal genus that, together with Volvox, shows convergent evolution of spheroidal multicellular bodies with somatic cells of the colonial or multicellular volvocine lineage. A recent whole-genome analysis of A. gubernaculifera resolved the molecular-genetic basis of such convergent evolution, and two species of Astrephomene were described. However, maintenance of culture strains of Astrephomene requires rapid inoculation of living cultures, and cryopreserved culture strains have not been established in public culture collections. RESULTS: To establish cryopreserved culture strains of two species of Astrephomene, conditions for cryopreservation of the two species were investigated using immature and mature vegetative colonies and two cryoprotectants: N,N-dimethylformamide (DMF) and hydroxyacetone (HA). Rates of cell survival of the A. gubernaculifera or A. perforata strain after two-step cooling and freezing in liquid nitrogen were compared between different concentrations (3 and 6%) of DMF and HA and two types of colonies: immature colonies (small colonies newly released from the parent) and mature colonies (large colonies just before daughter colony formation). The highest rate of survival [11 ± 13% (0.36-33%) by the most probable number (MPN) method] of A. gubernaculifera strain NIES-4017 (established in 2014) was obtained when culture samples of immature colonies were subjected to cryogenic treatment with 6% DMF. In contrast, culture samples of mature colonies subjected to 3% HA cryogenic treatment showed the highest "MPN survival" [5.5 ± 5.9% (0.12-12%)] in A. perforata. Using the optimized cryopreservation conditions for each species, survival after freezing in liquid nitrogen was examined for six other strains of A. gubernaculifera (established from 1962 to 1981) and another A. perforata strain maintained in the Microbial Culture Collection at the National Institute for Environmental Studies (MCC-NIES). We obtained ≥0.1% MPN survival of the A. perforata strain. However, only two of the six strains of A. gubernaculifera showed ≥0.1% MPN survival. By using the optimal cryopreserved conditions obtained for each species, five cryopreserved strains of two species of Astrephomene were established and deposited in the MCC-NIES. CONCLUSIONS: The optimal cryopreservation conditions differed between the two species of Astrephomene. Cryopreservation of long-term-maintained strains of A. gubernaculifera may be difficult; further studies of cryopreservation of these strains are needed.


Assuntos
Clorófitas , Clorófitas/genética , Criopreservação/métodos , Congelamento , Dimetilformamida
9.
DNA Res ; 29(6)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197113

RESUMO

Diatoms function as major primary producers, accumulating large amounts of biomass in most aquatic environments. Given their rapid responses to changes in environmental conditions, diatoms are used for the biological monitoring of water quality and for performing ecotoxicological tests in aquatic ecosystems. However, the molecular basis for their toxicity to chemical compounds remains largely unknown. Here, we sequenced the genome of a freshwater diatom, Mayamaea pseudoterrestris NIES-4280, which has been proposed as an alternative strain of Navicula pelliculosa UTEX 664 for performing the Organisation for Economic Co-operation and Development ecotoxicological test. This study shows that M. pseudoterrestris has a small genome and carries the lowest number of genes among freshwater diatoms. The gene content of M. pseudoterrestris is similar to that of the model marine diatom, Phaeodactylum tricornutum. Genes related to cell motility, polysaccharide metabolism, oxidative stress alleviation, intracellular calcium signalling, and reactive compound detoxification showed rapid changes in their expression patterns in response to copper exposure. Active gliding motility was observed in response to copper addition, and copper exposure decreased intracellular calcium concentration. These findings enhance our understanding of the environmental adaptation of diatoms, and elucidate the molecular basis of toxicity of chemical compounds in algae.


Assuntos
Diatomáceas , Diatomáceas/genética , Cobre/toxicidade , Cálcio , Ecossistema
11.
BMC Microbiol ; 22(1): 103, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35421922

RESUMO

BACKGROUND: Colonial and multicellular volvocine green algae have been extensively studied recently in various fields of the biological sciences. However, only one species (Pandorina morum) has been cryopreserved in public culture collections. RESULTS: Here, we investigated conditions for cryopreservation of the multicellular volvocine alga Gonium pectorale using vegetative colonies or cells and zygotes. Rates of vegetative cell survival in a G. pectorale strain after two-step cooling and freezing in liquid nitrogen were compared between different concentrations (3% and 6%) of the cryoprotectant N,N-dimethylformamide (DMF) and two types of tubes (0.2-mL polymerase chain reaction tubes and 2-mL cryotubes) used for cryopreservation. Among the four conditions investigated, the highest rate of survival [2.7 ± 3.6% (0.54-10%) by the most probable number (MPN) method] was obtained when 2.0-mL cryotubes containing 1.0 mL of culture samples with 6% DMF were subjected to cryogenic treatment. Using these optimized cryopreservation conditions, survival rates after freezing in liquid nitrogen were examined for twelve other strains of G. pectorale and twelve strains of five other Gonium species. We obtained ≥ 0.1% MPN survival in nine of the twelve G. pectorale strains tested. However, < 0.1% MPN survival was detected in eleven of twelve strains of five other Gonium species. In total, ten cryopreserved strains of G. pectorale were newly established in the Microbial Culture Collection at the National Institute for Environmental Studies. Although the cryopreservation of zygotes of volvocine algae has not been previously reported, high rates (approximately 60%) of G. pectorale zygote germination were observed after thawing zygotes that had been cryopreserved with 5% or 10% methanol as the cryoprotectant during two-step cooling and freezing in liquid nitrogen. CONCLUSIONS: The present study demonstrated that cryopreservation of G. pectorale is possible with 6% DMF as a cryoprotectant and 1.0-mL culture samples in 2.0-mL cryotubes subjected to two-step cooling in a programmable freezer.


Assuntos
Clorófitas , Zigoto , Criopreservação , Nitrogênio , Filogenia
12.
J Exp Zool A Ecol Integr Physiol ; 337(5): 559-565, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35286770

RESUMO

Larval dispersal and postsettlement survival of corals play significant roles in the maintenance of coral populations. Most corals acquire their symbiotic algae (Symbiodiniaceae) from the environment in each generation (horizontal transmission). For horizontal transmitters, the quick establishment of symbiosis is important for their survival, since the photosynthetic activity of symbiotic algae provides energy. However, recent studies have indicated that oxidative stress resulting from photosynthesis might also harm coral larvae. Therefore, it remains unclear whether symbionts contribute energy sources along with intrinsic lipids from eggs and assist in settlement/metamorphosis in early life stages. In the present study, we show that symbiotic algae contribute supplemental energy and are also associated with settlement. Furthermore, although juveniles acquired symbiotic algae after settlement, the acquisition of symbiotic algae in the larval stages caused higher growth (number of polyps and size) and low mortality in the juvenile stage. Our data suggest that symbiotic larvae potentially have longer dispersal periods due to their lower lipid consumption rates, which make them better able to retain buoyancy and motility, increasing the ability of symbiotic larvae to settle in favored locations compared with aposymbiotic larvae. Moreover, postsettlement juveniles may continue to benefit from symbiotic relationships formed during the larval stage. Overall, these findings reveal that the effects of symbiotic algae on Acropora tenuis coral larvae are beneficial, particularly under normal seawater temperature conditions.


Assuntos
Antozoários , Dinoflagelados , Animais , Antozoários/fisiologia , Dinoflagelados/fisiologia , Larva/fisiologia , Fotossíntese , Simbiose/fisiologia
13.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159689

RESUMO

With global warming and the depletion of fossil resources, our fossil fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as a clean and renewable energy. To realize this, the photocatalytic water-splitting reaction, which produces H2 from water and solar energy through photocatalysis, has attracted much attention. However, for practical use, the functionality of water-splitting photocatalysts must be further improved to efficiently absorb visible (Vis) light, which accounts for the majority of sunlight. Considering the mechanism of water-splitting photocatalysis, researchers in the various fields must be employed in this type of study to achieve this. However, for researchers in fields other than catalytic chemistry, ceramic (semiconductor) materials chemistry, and electrochemistry to participate in this field, new reviews that summarize previous reports on water-splitting photocatalysis seem to be needed. Therefore, in this review, we summarize recent studies on the development and functionalization of Vis-light-driven water-splitting photocatalysts. Through this summary, we aim to share current technology and future challenges with readers in the various fields and help expedite the practical application of Vis-light-driven water-splitting photocatalysts.

14.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35079797

RESUMO

In many lineages of algae and land plants, photosynthesis was lost multiple times independently. Comparative analyses of photosynthetic and secondary nonphotosynthetic relatives have revealed the essential functions of plastids, beyond photosynthesis. However, evolutionary triggers and processes that drive the loss of photosynthesis remain unknown. Cryptophytes are microalgae with complex plastids derived from a red alga. They include several secondary nonphotosynthetic species with closely related photosynthetic taxa. In this study, we found that a cryptophyte, Cryptomonas borealis, is in a stage just prior to the loss of photosynthesis. Cryptomonas borealis was mixotrophic, possessed photosynthetic activity, and grew independent of light. The plastid genome of C. borealis had distinct features, including increases of group II introns with mobility, frequent genome rearrangements, incomplete loss of inverted repeats, and abundant small/medium/large-sized structural variants. These features provide insight into the evolutionary process leading to the loss of photosynthesis.


Assuntos
Genomas de Plastídeos , Criptófitas/genética , Fotossíntese/genética , Filogenia , Plastídeos/genética
15.
Bot Stud ; 63(1): 1, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061120

RESUMO

BACKGROUND: The oogamous green algal genus Volvox exhibits extensive diversity in mating systems, including heterothallism and homothallism with unisexual (male and/or female) and/or bisexual spheroids. Although four mating systems have been recognized worldwide in strains identified as "Volvox africanus", most of these strains are extinct. However, we previously rediscovered two types of the four mating systems (heterothallic, and homothallic with male and bisexual spheroids within a clone) from an ancient Japanese lake, Lake Biwa. RESULTS: Here, we obtained strains exhibiting the third mating system (homothallic with unisexual male and female spheroids within a clone) from a freshwater area of Kalasin Province, Thailand. When sexual reproduction was induced in the present Thai strains, both male and female unisexual spheroids developed to form smooth-walled zygotes within a clonal culture. Phylogenetic analyses of the internal transcribed spacer region-2 of nuclear ribosomal DNA sequences from all four mating systems, including the extinct strains, resolved the third mating system is basal or paraphyletic within the homothallic clade. CONCLUSIONS: The present morphological and molecular data of the Thai strains indicate that they belong to the homothallic species V. africanus. The phylogenetic results suggested that third mating system (homothallic with separate male and female sexual spheroids) may represent an initial evolutionary stage of transition from heterothallism to homothallism within Volvox africanus. Further field collections in geologically stable intracontinental regions may be fruitful for studying diversity and taxonomy of the freshwater green algal genus Volvox.

16.
Front Plant Sci ; 12: 749895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925404

RESUMO

Marine phytoplankton are major primary producers, and their growth is primarily limited by nitrogen in the oligotrophic ocean environment. The haptophyte Braarudosphaera bigelowii possesses a cyanobacterial endosymbiont (UCYN-A), which plays a major role in nitrogen fixation in the ocean. However, host-symbiont interactions are poorly understood because B. bigelowii was unculturable. In this study, we sequenced the complete genome of the B. bigelowii endosymbiont and showed that it was highly reductive and closely related to UCYN-A2 (an ecotype of UCYN-A). We succeeded in establishing B. bigelowii strains and performed microscopic observations. The detailed observations showed that the cyanobacterial endosymbiont was surrounded by a single host derived membrane and divided synchronously with the host cell division. The transcriptome of B. bigelowii revealed that B. bigelowii lacked the expression of many essential genes associated with the uptake of most nitrogen compounds, except ammonia. During cultivation, some of the strains completely lost the endosymbiont. Moreover, we did not find any evidence of endosymbiotic gene transfer from the endosymbiont to the host. These findings illustrate an unstable morphological, metabolic, and genetic relationship between B. bigelowii and its endosymbiont.

18.
Sci Rep ; 11(1): 22231, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811380

RESUMO

Germ-soma differentiation evolved independently in many eukaryotic lineages and contributed to complex multicellular organizations. However, the molecular genetic bases of such convergent evolution remain unresolved. Two multicellular volvocine green algae, Volvox and Astrephomene, exhibit convergent evolution of germ-soma differentiation. The complete genome sequence is now available for Volvox, while genome information is scarce for Astrephomene. Here, we generated the de novo whole genome sequence of Astrephomene gubernaculifera and conducted RNA-seq analysis of isolated somatic and reproductive cells. In Volvox, tandem duplication and neofunctionalization of the ancestral transcription factor gene (RLS1/rlsD) might have led to the evolution of regA, the master regulator for Volvox germ-soma differentiation. However, our genome data demonstrated that Astrephomene has not undergone tandem duplication of the RLS1/rlsD homolog or acquisition of a regA-like gene. Our RNA-seq analysis revealed the downregulation of photosynthetic and anabolic gene expression in Astrephomene somatic cells, as in Volvox. Among genes with high expression in somatic cells of Astrephomene, we identified three genes encoding putative transcription factors, which may regulate somatic cell differentiation. Thus, the convergent evolution of germ-soma differentiation in the volvocine algae may have occurred by the acquisition of different regulatory circuits that generate a similar division of labor.


Assuntos
Evolução Biológica , Diferenciação Celular/genética , Clorofíceas/genética , Clorófitas/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Células Germinativas , Volvox/genética , Sequenciamento Completo do Genoma
19.
DNA Res ; 28(6)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34677568

RESUMO

Cyanobacteria are a diverse group of Gram-negative prokaryotes that perform oxygenic photosynthesis. Cyanobacteria have been used for research on photosynthesis and have attracted attention as a platform for biomaterial/biofuel production. Cyanobacteria are also present in almost all habitats on Earth and have extensive impacts on global ecosystems. Given their biological, economical, and ecological importance, the number of high-quality genome sequences for Cyanobacteria strains is limited. Here, we performed genome sequencing of Cyanobacteria strains in the National Institute for Environmental Studies microbial culture collection in Japan. We sequenced 28 strains that can form a heterocyst, a morphologically distinct cell that is specialized for fixing nitrogen, and 3 non-heterocystous strains. Using Illumina sequencing of paired-end and mate-pair libraries with in silico finishing, we constructed highly contiguous assemblies. We determined the phylogenetic relationship of the sequenced genome assemblies and found potential difficulties in the classification of certain heterocystous clades based on morphological observation. We also revealed a bias on the sequenced strains by the phylogenetic analysis of the 16S rRNA gene including unsequenced strains. Genome sequencing of Cyanobacteria strains deposited in worldwide culture collections will contribute to understanding the enormous genetic and phenotypic diversity within the phylum Cyanobacteria.


Assuntos
Cianobactérias , Ecossistema , Sequência de Bases , Cianobactérias/genética , Filogenia , RNA Ribossômico 16S/genética
20.
Microbes Environ ; 36(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135204

RESUMO

Chionaster nivalis is frequently detected in thawing snowpacks and glaciers. However, the taxonomic position of this species above the genus level remains unclear. We herein conducted molecular analyses of C. nivalis using the ribosomal RNA operon sequences obtained from more than 200 cells of this species isolated from a field-collected material. Our molecular phylogenetic analyses revealed that C. nivalis is a sister to Bartheletia paradoxa, which is an orphan basal lineage of Agaricomycotina. We also showed that C. nivalis sequences were contained in several previously examined meta-amplicon sequence datasets from snowpacks and glaciers in the Northern Hemisphere and Antarctica.


Assuntos
Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Neve/microbiologia , Regiões Antárticas , Basidiomycota/genética , Camada de Gelo/microbiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...